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On the px2 + Ax4 interaction 

R N Chaudhuri and B Mukherjeet 
Department of Physics, Visva-Bharati University, Santiniketan 731235, West Bengal, India 

Received 2 August 1983 

Abstract. The even and odd parity eigenvalues for the bounded potential 
px2+Ax4 ,  with both positive and negative values of p and A > O ,  are obtained by the 
method of series solution. 

The energy eigenvalues of the anharmonic oscillator with anharmonicity Ax4 have been 
studied extensively by a number of authors (Banerjee et a1 1978, Bender and Wu 
1969, Loeffel et a1 1970, Fung et a1 1978, Drummond 1981, Biswas et al 1971,1973, 
Halpern 1973, Singh et a1 1978, Bozzolo et a1 1982, Killingbeck 1978, Austin and 
Killingbeck 1982) using different perturbative and non-perturbative techniques. Ben- 
der and Wu (1969) have shown that the perturbation series in terms of the parameter 
A is divergent for all A though each term of the series is finite. The Pad6 approximation 
method and the Bore1 summation technique have been used to recover finite results 
for the energy correction (Simon 1970, Graffi et a1 1970, Graffi and Grecchi 1978, 
Loeffel et a1 1970). The logarithmic perturbation expansion (Dolgov et a1 1980, 
Aharonov and Au 1979) has also been used to study the Ax4 anharmonic oscillator. 
The first-order logarithmic perturbation iteration method (Au et a1 1983, Au 1980) 
which introduces cut-offs in the numerical integrations is, however, not very accurate 
in evaluating the excited state energy eigenvalues. The eigenvalues of the anharmonic 
oscillator of type AxZrn have been calculated by Biswas et a1 (1971, 1973) using the 
infinite Hill determinant method which produces the eigenvalues to a high degree of 
accuracy for any arbitrary value of the coupling constant A. The energy eigenvalues 
of the anharmonic oscillators are also obtained in a semi-empirical manner (Hioe and 
Montrolll975, Hioe et a1 1978, Mathews et a1 1981) using the extended WKB formula. 

Recently the pure AxZm oscillators bounded by infinite potentials at x = i-L have 
been studied (Chaudhuri and Mukherjee 1983, Barakat and Rosner 1981) by the 
method of series solution, and it has been shown that the lower-order eigenvalues 
tend rapidly to the values of the unbounded oscillator as L is made larger. This finite 
box method is applied here to the case of anharmonic oscillator with anharmonicity 
Ax4 bounded by infinitely high potentials at x = +L. We have to solve the eigenvalue 
equation 

(-d’/dxZ+pxZ+ A x ‘ ) ~ ( x )  = EJl(x) (1) 

subject to the boundary conditions $,(+L) = 0. We make the change of variable y = x / L  
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so that the boundary conditions become $( y = il) = 0 and equation (1) is transformed 
to 

(d2/dy2+E-ay2-  by4)+(y)=0 (2) 

where E = EL', a = pL4 and b = AL'. 
It is clear from (2) that y = 0 is an ordinary point and y = CD is an irregular singular 

point of the differential equation. The symmetry of equation (2) implies that + ( y )  
admits a convergent even and odd power series solution valid in the box 1x1 S L: 

n =O 

0; 

$"(y)= c A2n+lY2n+' 
n =O 

(3) 

(4) 

where the superscripts 'e' and '0' refer to the even and odd parity solutions. It should 
be noted that the replacement of n by n + f  in the even series solution reproduces the 
odd series solution. The coefficients ASn and satisfy a set of recursion relations. 
The recursion relations satisfied by the even coefficients are given below: 

2A2+ EA"= 0 ( 5 a )  

12A4 + EA 2 - u A ~  = 0 (5b) 

2n(2n - l ) A z n  + U A ~ , , - ~ -  bA,,-, = 0 n 5 3. ( 5 c )  
Similar relations exist for the odd coefficients. 

We put A" = A I  = 1 and apply the recursion relations to evaluate 

The zeros of the functions f ' , " (~ )  give us the eigenvalues of the even and odd parity 
solutions. In table 1 we tabulate the first four eigenvalues of the confined p x 2 + A x 4  
anharmonic oscillator with p = 1, A =0.1, 1.0, 10.0, 100.0 and L = 1, 2, 3. Our values 
for p = 1 with L = 3 are also compared in table 1 with the exact eigenvalues for the 
unbounded oscillator (Biswas e t a l l973)  and it is found that the agreement is excellent. 
The results may be improved further by increasing L and by including a large number 
of terms of equations (6) .  It is clear from the table that when A is large the eigenvalues 
remain almost unchanged for L = 2 and 3 where the potentials are made infinitely 
high. This is because for large A the potential function p x 2 + h x 4  becomes effectively 
infinite at x = 2 in comparison with its values around x = 0. This method of finite box 
approximation is suitable for finding the eigenvalues of the unbounded oscillator when 
A is large. 

The variation of the eigenvalues for the potential p x 2 + A x 4  confined in a box for 
different positive and negative values of p and fixed A is shown in table 2. It should 
be mentioned here that for negative p the term Ax4 cannot be treated as a distortion 
over the harmonic oscillator. For the harmonic oscillator problem we have the 
convergence factor exp(-fdpx') which demands that p should be positive for the 
normalisation of the wavefunction. The Hill determinant method of Biswas er af (1971) 
also fails for negative p. For negative p one has to find a completely new wavefunction 
which is square integrable, otherwise one may get the wrong answer (Saxena and 
Varma 1982). In our method the advantage is that the eigenvalues are obtained from 
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Table 1. The first four eigenvalues of the confined px2+Ax4 oscillator with p = 1, A = 0.1, 
1.0, 10.0, 100.0 and L =  1, 2, 3 and those of the unbounded (L+co) oscillator (Biswas er 
al 1973). 

Unbounded 
oscillator 

A L = l  L = 2  L = 3  (L -3 

0.1 2.601 1.116 1.065 1.0653 
10.162 3.673 3.309 3.3069 
22.534 7.036 5.761 5.7480 
39.817 11.452 8.417 8.3527 

1 .o 2.637 1.398 1.392 1.3924 
10.263 4.695 4.649 4.6488 
22.675 8.868 8.655 8.6550 
39.975 13.836 13.157 13.1568 

10.0 2.969 2.449 2.449 2.4492 
11.228 8.599 8.599 8.5990 
24.068 16.636 16.636 16.6359 
41.555 25.806 25.806 25.8063 

100.0 4.989 4.999 4.999 4.9994 
17.946 17.830 17.830 17.8302 
35.399 34.874 34.874 34.8740 
56.116 54.385 54.385 54.3853 

Table 2. The first four eigenvalues for the bounded potential * x 2  + Ax4 with A = 1, p = --1 .O,  
0, 1.0, 4.0 and L =  1, 2, 3 and those of the unbounded (L+co) oscillator (Chan and 
Stellman (1963) for p = O  and Biswas et al (1973) for p = 1.0). 

Unbounded 
oscillator 

c1 L = l  L = 2  L = 3  (L  + 03) 

-1.0 2.377 
9.701 

22.054 
39.333 

0 2.508 
9.983 

22.364 
39.654 

1 .0 2.637 
10.263 
22.675 
39.975 

4.0 3.008 
11.090 
23.609 
40.942 

0.687 
2.985 
6.665 

11.323 

1.073 
3.882 
7.784 

12.584 

1.398 
4.695 
8.868 

13.836 

2.160 
6.748 

11.845 
17.457 

0.658 
2.835 
6.164 

10.038 

1.060 
3.800 
7.456 

11.645 

1.392 
4.649 
8.655 

13.157 

2.159 
6.740 

11.787 
17.209 

1.0604 
3.7997 
7.4557 

11.6448 

1.3924 
4.6488 
8.6550 

13.1568 
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a single equation for both positive as well as negative values of y so long as A is 
positive. When A is positive the potential function V(x)  = yx2+Ax4 remains confining 
for both positive and negative y. Our method of finite box approximation is not, 
however, applicable for negative values of A. This is because we are making the 
potentials +CO at x = * L  while the potential function y x 2 + A x 4  tends to --m with 
increasing x for negative A. The problem of stabilisation (Hazi and Taylor 1970) may 
set in for negative h as is in the renormalisation series approach (Killingbeck 1981, 
Austin and Killingbeck 1982). Recently Flessas et a1 (1983) have obtained a class of 
exact solutions for the Schrodinger equation with the potential V(x)  = yx2+  Ax4, x > 0, 
3 0, A < 0, and have shown that the corresponding energy spectrum is continuous. 

They have, however, used a cut-off in the potential function for large x. 
The problem of applying the series method for the unbounded oscillator has been 

discussed by us in a recent paper (Chaudhuri and Mukherjee 1983). For the unbounded 
oscillator the boundary conditions +(*a) = 0 cannot be imposed on the infinite series 
since the point at infinity is an irregular singular point of the differential equation (1) 
and the series may not be convergent at that point. For the bounded oscillator the 
boundary conditions (cr(*L) = 0 do not pose any problem. For the unbounded eigen- 
value problem one has to find a proper convergence x-factor for the wavefunction 
(Killingbeck 1981, Ginsburg 1982). The convergence factor is not required fo-r the 
evaluation of the energy eigenvalues of the bounded potential problem by the infinite 
series method. It can be shown easily that the Hill determinant diverges if the proper 
convergence x-factor is not factored out from the wavefunction. Moreover, the Hill 
determinant method or the equivalent infinite continued fraction method may give 
rise to spurious solutions (Chaudhuri 1983, Fleassas 1982) since the boundary condi- 
tions +(+a) = O  are not incorporated into the method. 

Our method of finite box approximation is applicable to any form of potentials 
having no singularity for finite values of x. An oscillator with A x Z n  distortion will be 
discussed in the future. The finite box method is also applicable for the potential 
V (  x) = px2 + Ax4 + 7x6 with positive 7 and positive or negative A and p. This potential 
has been discussed by a number of authors (Khare 1981, Flessas and Das 1980) in 
the context of negative A. A particular feature of the eigenvalues of this potential is 
that Rayleigh-Schrodinger perturbation theory may not be applicable for negative A. 
The potential with positive and negative A will be studied in the future by the method 
of finite box approximation. 
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